I guess this will be simple for C++/CLI gurus.
I am creating a wrapper which will expose high-performance C++ native classes to C# WinForms application. Everything went fine with simple known objects and I could wrap also a callback function to delegate. But now I am a bit confused.
The native C++ class has a following method:
int GetProperty(int propId, void* propInOut)
At first I thought I could use void* as IntPtr, but then I found out that I need to access it from C#. So I thought about a wrapper method:
int GetProperty(int propId, Object^ propInOut)
but as I looked through the C++ source, I found out that the method needs to modify the objects. So obviously I need:
int GetProperty(int propId, Object^% propInOut)
Now I cannot pass Objects to native methods so I need to know how to treat them in the wrapper. As the caller should always know what kind of data he/she is passing/receiving, I declared a wrapper:
int Get开发者_JAVA百科Property(int propId, int dataType, Object^% propInOut)
I guess, I can use it to pass reference and value types, for example, an int like this:
Object count = 100; // yeah, I know boxing is bad but this will not be real-time call anyway
myWrapper.GetProperty(Registry.PROP_SMTH, DATA_TYPE_INT, ref count);
I just added a bunch of dataType constants for all the data types I need:
DATA_TYPE_INT, DATA_TYPE_FLOAT, DATA_TYPE_STRING, DATA_TYPE_DESCRIPTOR, DATA_TYPE_BYTE_ARRAY
(DATA_TYPE_DESCRIPTOR is a simple struct with two fields: int Id and wstring Description - this type will be wrapped too, so I guess marshaling will be simple copying data back and forth; all the native strings are Unicode).
Now, the question is - how to implement the wrapper method for all these 5 types? When I can just cast Object^% to something (is int, float safe to do that?) and pass to native method, when do I need to use pin_ptr and when I need some more complex marshaling to native and back?
int GetProperty(int propId, int dataType, Object^% propInOut)
{
if(dataType == DATA_TYPE_INT)
{
int* marshaledPropInOut = ???
int result = nativeObject->GetProperty(propId, (void*)marshaledPropInOut);
// need to do anything more?
return result;
}
else
if(dataType == DATA_TYPE_FLOAT)
{
float* marshaledPropInOut = ???
int result = nativeObject->GetProperty(propId, (void*)marshaledPropInOut);
// need to do anything more ?
return result;
}
else
if(dataType == DATA_TYPE_STRING)
{
// will pin_ptr be needed or it is enough with the tracking reference in the declaration?
// the pointers won't get stored anywhere in C++ later so I don't need AllocHGlobal
int result = nativeObject->GetProperty(propId, (void*)marshaledPropInOut);
// need to do anything more?
return result;
}
else
if(dataType == DATA_TYPE_BYTE_ARRAY)
{
// need to convert form managed byte[] to native char[] and back;
// user has already allocated byte[] so I can get the size of array somehow
return result;
}
else
if(dataType == DATA_TYPE_DESCRIPTOR)
{
// I guess I'll have to do a dumb copying between native and managed struct,
// the only problem is pinning of the string again before passing to the native
return result;
}
return -1;
}
P.S. Maybe there is a more elegant solution for wrapping this void* method with many possible datatypes?
It doesn't necessarily make sense to equate a C# object to a void*. There isn't any way to marshal arbitrary data. Even with an object, C# still knows what type it is underneath, and for marshaling to take place -- meaning a conversion from the C++ world to C# or vice-versa -- the type of data needs to be known. A void* is just a pointer to memory of a completely unknown type, so how would you convert it to an object, where the type has to be known?
If you have a limited number of types as you describe that could be passed in from the C# world, it is best to make several overloads in your C++/CLI code, each of which took one of those types, and then you can pin the type passed in (if necessary), convert it to a void*, pass that to your C++ function that takes a void*, and then marshal back as appropriate for the type.
You could implement a case statement as you listed, but then what do you do if you can't handle the type that was passed in? The person calling the function from C# has no way to know what types are acceptable and the compiler can't help you figure out that you did something wrong.
精彩评论